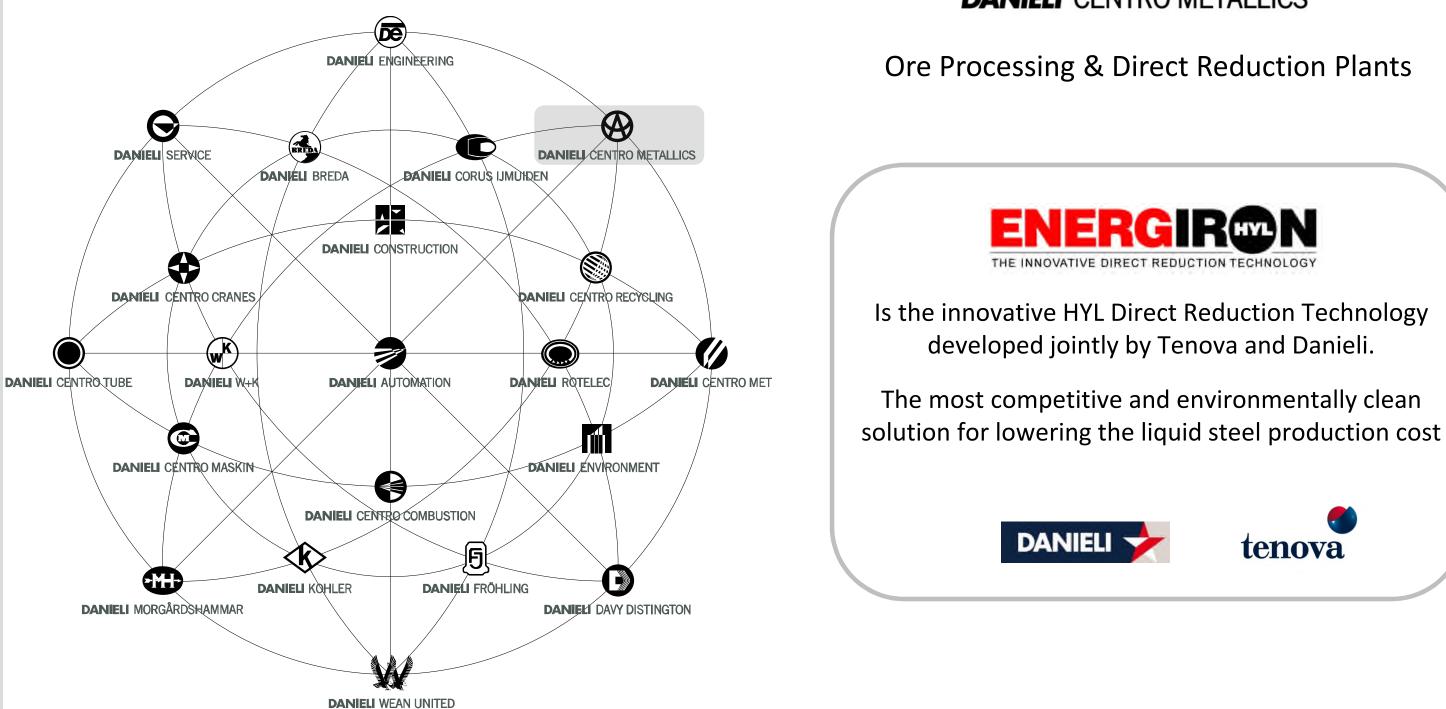
LAKE ST. JOSEPH IRON ORE MINE



ROCKEX MINING CORPORATION CONCENTRATION, PELLETIZING & DR PLANT (HBI)

DANIELI CENTRO METALLICS

DANIELI CENTRO METALLICS

Rockex Mining Project Conceptual Site

The ROM (Run Of Mine ore) mined from Rockex properties will be processed in three steps:

- 1. BENEFICIATION PLANT in Lake St. Joseph - for metallurgical upgrading of the ROM - product is iron ore concentrate
- **PELLETIZING PLANT** in Sioux Lookout 2. - for physical upgrading - product is iron ore pellet

3.

DIRECT REDUCTION PLANTS in Sioux Lookout - for iron ore reduction to metallic Fe - product is HBI (Hot Briquetted Iron)

Pelletizing and Direct Reduction Plants will be located in Sioux Lookout to take advantage of the geographically nearer point to the railway.

Concentrate will be transported from Lake St. Joseph to Sioux Lookout by means of a SLURRY PIPELINE.

Sa Majesté la Reine du chef du Canada, Ressources naturelles Canada.

HBI (Hot Briquetted Iron)

- HBI is a form of Direct Reduced Iron (DRI) where iron oxide pellets and/or iron lump ores are \checkmark reduced (oxygen is removed) in solid state by a reducing gas agent
- HBI is defined as a compacted form of DRI compressed at or above 650° C with a density greater than 5.0 g/cm³
- Hot briquetting of DRI closes internal pores, lowers the accessible surface, increases the apparent density, and improves thermal conductivity, all of which reduce the DRI reactivity.
- Thanks to these characteristics, HBI is a stable product for long term storage and ocean shipping, therefore it's the preferred DRI form for merchant market applications.

HBI	%
METALLIZATION	94
CARBON	1,5

HBI	g/cm³
BULK DENSITY	2,5 - 2,8
APPARENT DENSITY	4,8 – 5,3

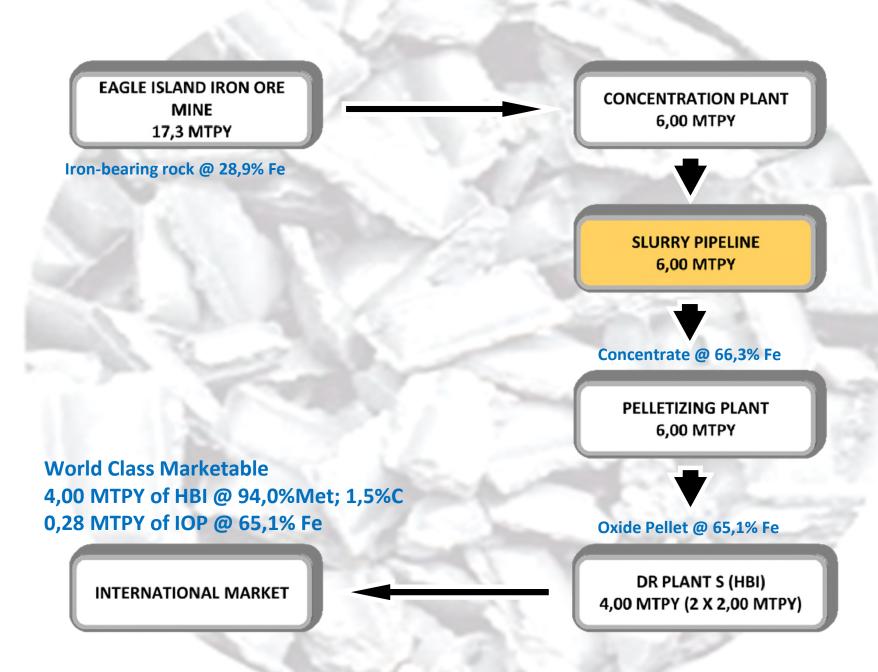
HBI IS USED AS A SOURCE OF VIRGIN IRON UNITS TO PRODUCE HIGH QUALITY STEEL

DRI IS USED IN ELECTRIC ARC FURNACES TO COMPLETELY OR PARTIALLY REPLACE SCRAP & PIG IRON

- ✓ Higher Volumetric Weight
- ✓ Uniformity of Chemical Analysis
- ✓ Freedom from Undesirable Elements

HBI CAN BE USED ALSO IN BLAST FURNACES AS PARTIAL FEEDING MATERIAL

- \checkmark Lower BF CO₂ emissions
- ✓ Greater BF capacity
- ✓ Lower coke consumption


DANIELI CENTRO METALLICS

The Lake St. Joseph Mine Iron Ore

Simple Block Flow Diagram & Plants Capacity

Operating Life: 30 years @ 52,752 t/d

Capacities are expressed in metric units

DANIELI CENTRO METALLICS

Basis of Design – ROCKEX Plant Capacity

Plant Owner		Rockex Mining Corporation				
Country		Canada				
Location		Lake St. Joseph				
Operating Mode		Continuous				
Process	Unit	Concentration	Pelletizing			
Technology		Grinding, Gravity and Magnetic Separation	Straight Grate			
Operating Mode		Continuous	Continuous			
Lines		1	1			
Type of Product		Concentrate	DR Grade Pellets	Hot		
Crude Ore Demand	Mt/a	17.3				
Nominal Production	Mt/a	6.00	6.00			
Operating Time	h	7,884	7,884			
Availability	%	90.0	90.0			
Production Rate	t/h	761	761			
Production Rate	t/d	18,264	18,264			

Source: Danieli Heat & Mass Balances Simulations

DANIELI CENTRO METALLICS

Direct Reduction

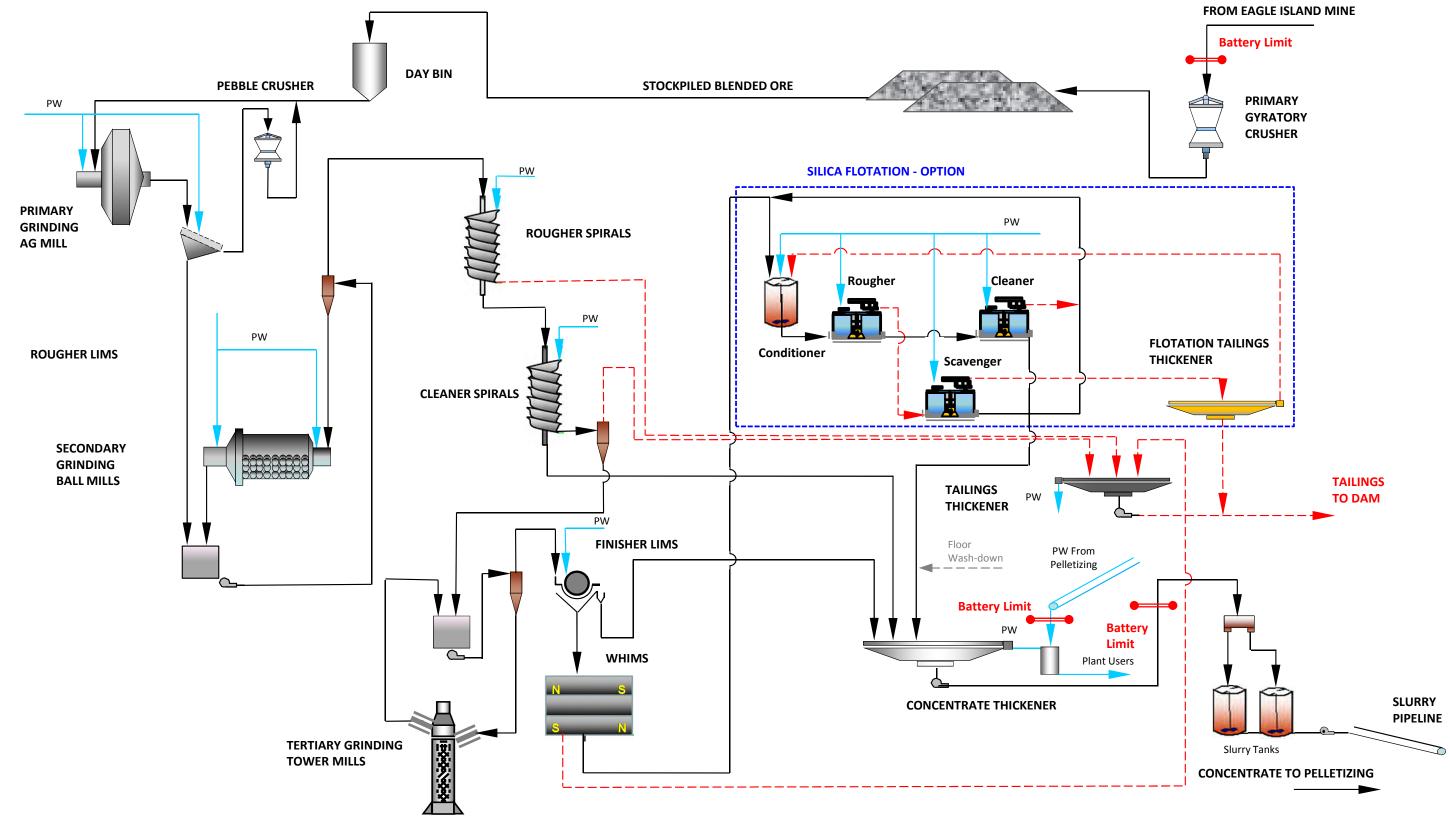
ENERGIRON ZR

Continuous

2

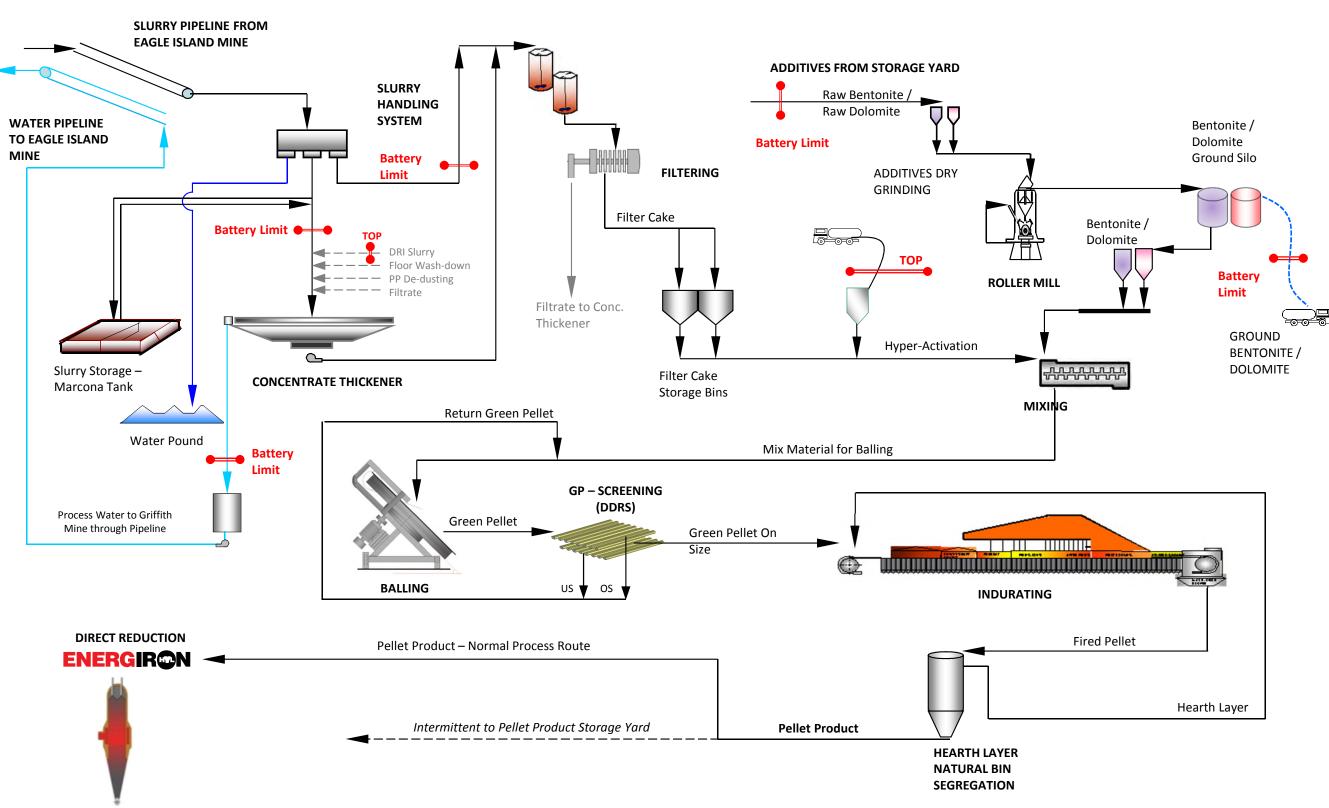
ot Briquette Iron (HBI)

4,00


7,800

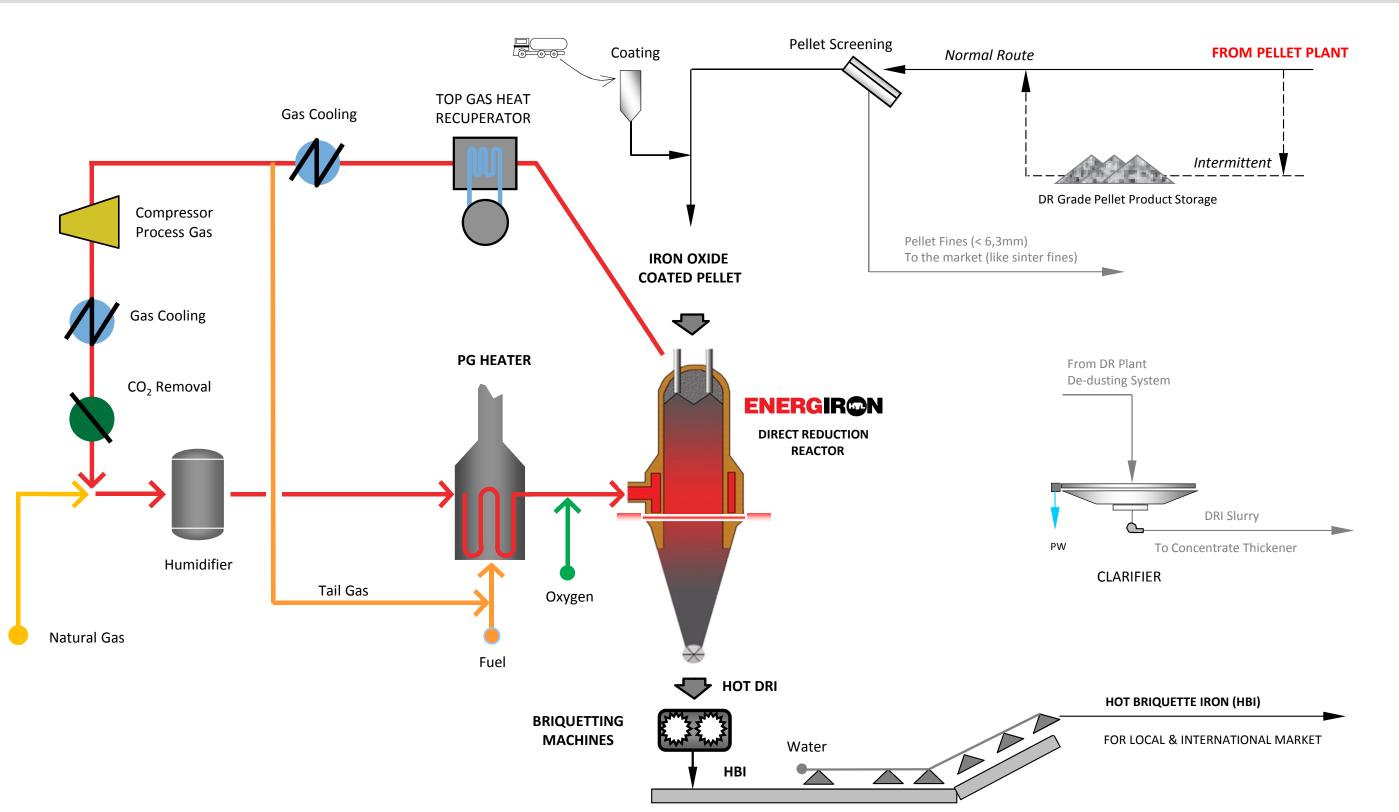
89.0

512,8


12,308

Conceptual PFD – Concentration Process at Mine site

Conceptual PFD – Pelletizing Process at Sioux Lookout



Source: Danieli Iron Ore Processing Group

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION OF TENOVA HYL AND DANIELI & C. SPA NOT DISCLOSABLE, NOT REPRUDOCIBLE. ALL RIGHTS RESERVED.

DANIELI CENTRO METALLICS

Conceptual PFD – Direct Reduction HBI Process at Sioux Lookout

Slow Cooling Conveyor

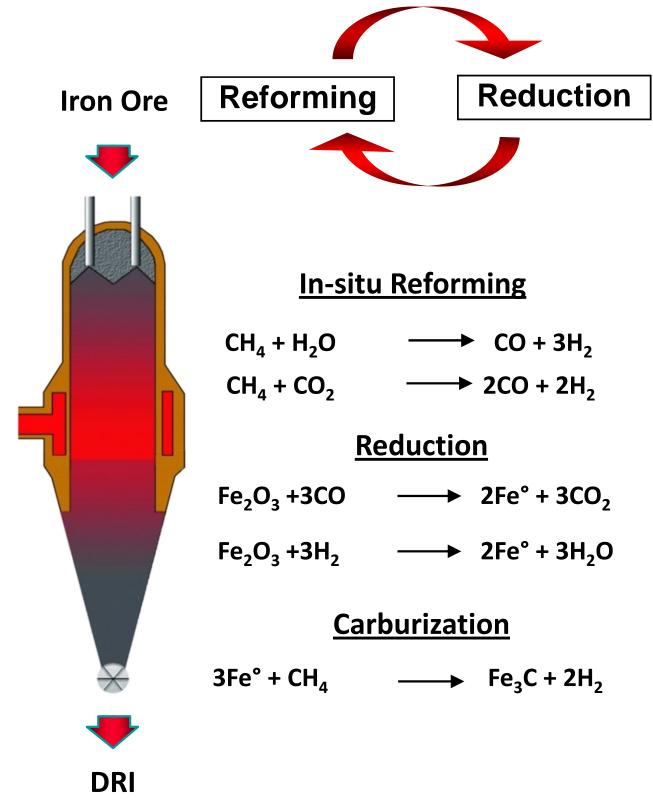
Source: Danieli Direct Reduction Group

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION OF TENOVA HYL AND DANIELI & C. SPA NOT DISCLOSABLE, NOT REPRUDOCIBLE. ALL RIGHTS RESERVED.

DANIELI CENTRO METALLICS

Direct Reduction Process – ZR Scheme

IN-SITU Reforming:

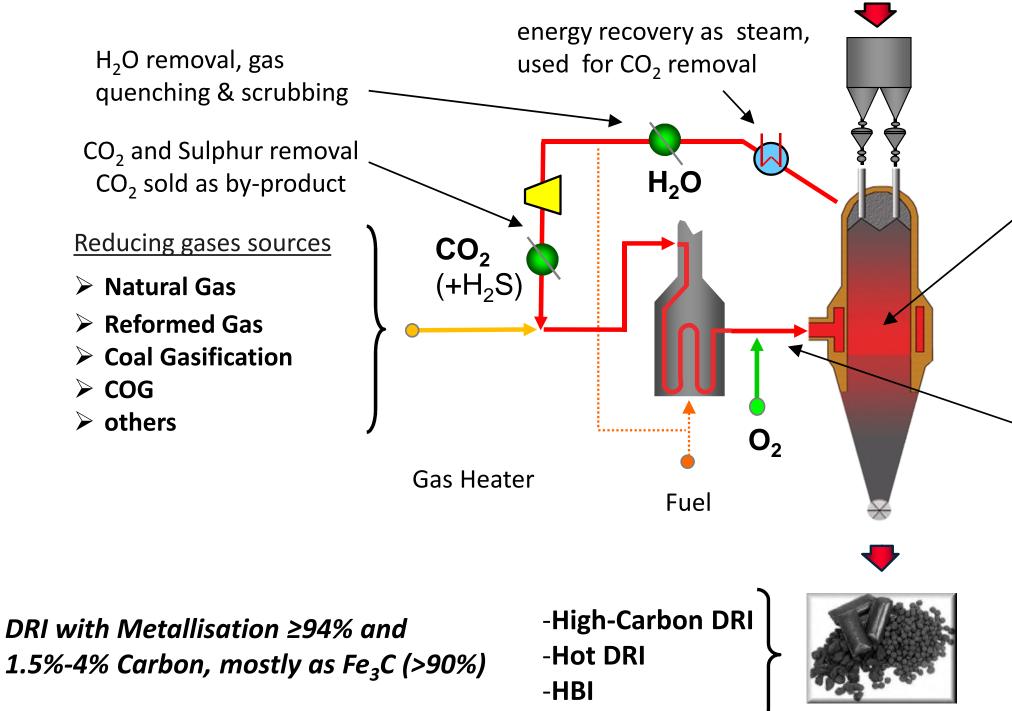

- Conditions for Hydrocarbons reforming: •
 - ✓ presence of Oxidants and hydrocarbons
 - $(H_2O+CO_2+C_nH_{2n+2})$
 - ✓ high temperature
 - \checkmark presence of catalyst

Iron Oxides Reduction:

- *The conditions for the reduction of iron oxides are:* •
 - \checkmark presence of reductants

 $(H_2+CO)/(H_2O+CO_2)>>1$

- ✓ high temperature
- \checkmark presence of iron oxides



) + 3H ₂

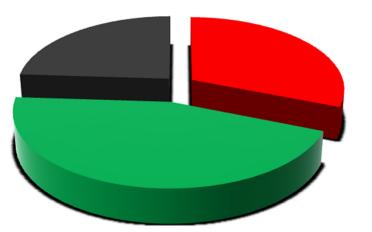
Iron Ore

THE INNOVATIVE ZERO-REFORMER (ZR) SCHEME

DANIELI CENTRO METALLICS

Simultaneous:

- *in-situ* CH₄ reforming
- Reduction of iron ore
- Carburisation


High Temp: >1050°C

High Pressure: 6-8 bar

GREEN TECHNOLOGY (Low CO_2 and NO_x emissions)

- CO₂ and NO_x emissions are in compliance with the most strictly environmental regulation \succ worldwide
- Approx. the 60% of total C input can be <u>SELECTIVELY</u> removed as pure CO_2 : \succ
 - Reduction in CO₂ emissions \checkmark
 - Possibility to sell as by-product the removed CO₂

	Carbon Balance %	Carbon Balance kg/t _{DRI}	Kg CO₂/t DRI
Carbon in Non Selective Emission	31%	44,4	163
Carbon in Selective Emission	45%	64,2	240
Carbon in Product (C=3.5%)	24%	35,2	-

DANIELI CENTRO METALLICS

Facilities Emission Levels

 Particulate & Gaseous Emissions

 Compound

 Dust

 SOx

 NOx

 Noise Emissions

 dBA

 Solid Effluents

The plant produces no solid effluents.

Floor Wash-down

Concrete floors around the process equipment will be designed to be cleaned by high-pressure process water. The slurry will be collected in sumps and returned to the process through the Concentrate Thickener

Liquid Effluents

Industrial Waste water:	Max 43 t/h blow-down will be generated from DRP WTP
Tailings:	From concentration plant 1050 m3/h will be disposed at the tailings pound
Cooling Water:	Cooling water blow-down is absorbed into the process water system
Steam Condensate:	Steam condensate, if any, is absorbed into the process water system
Sanitary Waste:	Approximately 50m ³ /day

NOTE: Definition of the applicable document for Industrial Emissions Assumed: Ontario Ministry of the Environment Ontario Regulation 194/05: Industry Emissions -- Nitrogen Oxides and Sulphur Dioxide Intensity Rate for Iron and Steel

Raw Materials, Intermediate Products and HBI Qualities

The final HBI quality predicted for ROCKEX is a marketable product

RAW MATERIALS / PRODUCT	UNIT	ROCKEX MINE		BINDER	FIRED PELLET	DRI/HBI
Chemical		Crude Ore	Concentrate	Bentonite	lron Oxide Pellet	Hot Briquette Iron
Fe tot	%	29	66,3	1,97	65,1	87,62
FeO	%		16		0,5	6,76
Fe2O3	%		-	2,86	91,42	
SiO2	%		5,23	65	5,48	7,37
AI2O3	%		0,2	18	0,29	0,39
CaO	%		0,1	1	0,56	0,75
MgO	%		0,1	2	0,36	0,48
S	%		0,05	0	0,002	0,0027
Р	%		0,02	0	0,02	0,027
K2O	%		0,02		0,02	0,027
Na2O	%		0,02		0,02	0,027
MnO	%		0,08		0,08	0,11
TiO2	%		0,15		0,15	0,18
B2	CaO/SiO2				0,1	0,1
Gangue	%		5,97	-	6,97	9,37
LOI	%		1,06	11	0	
Plate Water Absorption	%			500 to 600		
Size	%		85% < 44 µ	75% < 74µ	-16+8mm 93%	110x50x30 mm
Tumbler	%				93	
CCS	Kg/P				250	
Carbon	%					1,5
Metallization	%					94

Metallurgical Experimentation must be implemented to confirm the final process configuration and quality of the concentrate – pellet product and finally the HBI

Source: Danieli Heat & Mass Balances Simulations

Conclusions

\checkmark \checkmark \checkmark

SUSTAINABILITY

Environmental impact for steel production DRP-EAF is lower than traditional BF route

ENERGIRON is the DR technology with lowest CO₂ and NO_x emissions

STEEL QUALITY

Steel market trends towards higher quality steel grades

Use of HBI provides higher final product quality and protects steel producers from volatility of scrap price

AVAILABILITY

Despite the market request, there's a lack of HBI merchant suppliers, especially in North America

- The past-leading Venezuela's HBI industry is progressively collapsing
- voestAlpine plans to start production in Texas in 2016, anyhow most of the HBI production won't be for merchant market
- Nucor operates in LA the largest DRP in the world, ENERGIRON ZR technology, anyhow the production of 2.5Mtpy of High-C CDRI is entirely shipped to the Nucor's EAF mills in NA

THE ROCKEX HBI PROJECT IS A MARKET OPPORTUNITY TO FILL THE LACK OF DRI OFFER.

POLITICAL STABILITY, COMMIDITIES AVAILABILITY AND GOOD LOGISTICS MAKE CANADA A PERFECT LOCATION TO SERVE NORTH AMERICA AND POTENTIALLY THE ENTIRE GLOBAL MARKET.

THANKS TO THE INNOVATIVE DANIELI TECHNOLOGY, ROCKEX WILL BE ABLE TO SATISFY THE STEEL MARKET'S REQUESTS PROVIDING MERCHANT HBI IN A SUSTAINABLE AND ECONOMICAL WAY.

ROCKEX MINING CORPORATION CONCENTRATION, PELLETIZING & DR PLANT (HBI)

THANK YOU

DANIELI CENTRO METALLICS

